武汉工程大学计算机科学与工程学院 教师介绍  姓名:鲁统伟 出生年月:1979年4月 职称:教授 学历(学位):博士 专业:模式识别与智能系统 毕业院校:华中科技大学 图像识别与人工智能研究所 主要社会兼职:中国计算机学会会员、中国人工智能学会会员。 主要研究方向:数字图像处理、机器视觉、图像理解与识别、机器人控制技术、机器学习等。 研究生招收要求:热诚欢迎勤奋好学、能吃苦、有责任心的同学报考。欢迎数学、电信、控制、计算机、物理等专业, 具有一定的数理基础、英语和编程功底, 对图像处理算法研究有兴趣的同学报考。 近几年主持的科研项目:近年来共主持和参加国家自然科学基金项目、湖北省自然科学基金项目、湖北省教育厅科学研究计划项目、湖北省教育厅优秀中青年科技创新团队资助计划项目等多项重大科研项目的研究,以及一批企业委托横向科研项目的研究工作。近年来在国内外重要学术刊物上发表科研论文五十余篇,授权国家发明专利10项。 [1]. Mao, Zhanpeng; Lu, Tongwei .Dual-stream network with complementary fusion and hierarchical attention for image tampering localization.Signal, Image and Video Processing.2025.v 19, n 3 [2]. Shao, Pengyan; Lu, Tongwei .MLAD: Manifest and latent anomaly detection based on the integration of reconstruction and MLFP-KNN methods. Measurement Science and Technology.2025.v 36, n 1 [3]. Chang, Chenrui; Lu, Tongwei; Yao, Feng .MST-Adapter: Multi-Scaled Spatio-Temporal Adapter for Parameter-Efficient Image-to-Video Transfer Learning. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences.2025.v E108.A, n 5 [4]. Liu, Xuanxuan; Tang, Shuai; Ye, Mingzhi; Lu, Tongwei; Duan, Lixin .Semantic discrete decoder based on adaptive pixel clustering for monocular depth estimation. Neural Networks.2025.v 189 [5]. Chen, Yuqian; Lu, Tongwei .SGD-SLAM: a visual SLAM system with a dynamic feature rejection strategy combining semantic and geometric information for dynamic environments. Measurement Science and Technology.2025.v 36, n 2 [6]. Lu, Tongwei; Fan, Huageng; Chen, Yuqian; Shao, Pengyan .SNFR: salient neighbor decoding and text feature refining for scene text recognition. Machine Vision and Applications.2025.v 36, n 2 [7]. Li, Bo; Lu, Tongwei; Min, Feng .AaDR-PointCloud: An integrated point cloud processing network using attention and deep residual. Journal of Intelligent and Fuzzy Systems.2024.v 46, n 3 [8]. Lu, Tongwei; Yang, Qi; Min, Feng; Zhang, Yanduo .Action recognition based on adaptive region perception. Neural Computing and Applications.2024.v 36, n 2 [9]. Tang, Shuai; Lu, Tongwei; Liu, Xuanxuan; Zhou, Huabing; Zhang, Yanduo .CATNet: Convolutional attention and transformer for monocular depth estimation. Pattern Recognition.2024.v 145 [10]. Fan, Huageng; Lu, Tongwei .ESRNet: an exploring sample relationships network for arbitrary-shaped scene text detection. Applied Intelligence.2024.v 54, n 22 [11]. Xin, Zhimeng; Lu, Tongwei; Li, Yuzhou; You, Xinge .MultiCut-MultiMix: a two-level data augmentation method for detecting small and densely distributed objects in large-size images. Visual Computer.2024.v 40, n 4 [12]. Guo, Xin; Lu, Tongwei; Chen, Lei .SICFuse: Swin Transformer integrated with invertible neural network and correlation coefficient assistance for infrared and visible image fusion. Journal of Electronic Imaging.2024.v 33, n 6 [13]. Wang, Qi; Lu, Tongwei .The ringed residual u-net with non-natural regions feature for image splicing forgery detection and localization. Journal of Intelligent and Fuzzy Systems.2024.v 46, n 4 [14]. Xu, Zan; Lu, TongWei .Patch SVDD(support vector data description)-based channel attention embedding and improvement of classifier. Journal of Intelligent and Fuzzy Systems.2023.v 45, n 6 [15]. Zhang, Youyou; Lu, Tongwei .RecFRCN: Few-Shot Object Detection With Recalibrated Faster R-CNN. IEEE Access.2023.v 11 [16]. Li, Yaoshun; Liu, Lizhi; Lu, Tongwei .SAE-CenterNet: Self-attention enhanced CenterNet for small dense object detection. Electronics Letters.2023.v 59, n 3 [17]. Lu, TongWei; Jia, ShiHai; Zhang, Hao .MemFRCN: Few Shot Object Detection with Memorable Faster-RCNN. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences.2022.v E105A, n 12 [18]. Lu, Tongwei; Zhang, Hao; Min, Feng; Jia, Shihai .Vehicle Re-Identification Based on Quadratic Split Architecture and Auxiliary Information Embedding. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences.2022.v E105A, n 12 [19]. Meng, Xiangxi; Lu, Tongwei; Min, Feng; Lu, Tao .An effective weighted vector median filter for impulse noise reduction based on minimizing the degree of aggregation. IET Image Processing.2021.v 15, n 1
|